Android人工智能应用-如何让手机能明白你的手势,附教程
ztj100 2024-11-10 13:13 10 浏览 0 评论
这篇博客主要基于我做的一个数字手势识别APP,具体分享下如何一步步训练一个卷积神经网络模型(CNN)模型,然后把模型集成到Android Studio中,开发一个数字手势识别APP。整个project的源码已经开源在github上,github地址:Chinese-number-gestures-recognition,欢迎star,哈哈。先说下这个数字手势识别APP的功能:能够识别做出的 0,1,2,3,4,5,6,7,8,9,10这11个手势。
一、数据集的收集
这么点照片想训练模型简直天方夜谭,只能祭出 data augmentation(数据增强)神器了,通过旋转,平移,拉伸 等操作每张图片生成100张,这样图片就变成了21500张。下面是 data augmentation 的代码:
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img import os datagen = ImageDataGenerator( rotation_range=20, width_shift_range=0.15, height_shift_range=0.15, zoom_range=0.15, shear_range=0.2, horizontal_flip=True, fill_mode='nearest') dirs = os.listdir("picture") print(len(dirs)) for filename in dirs: img = load_img("picture//{}".format(filename)) x = img_to_array(img) # print(x.shape) x = x.reshape((1,) + x.shape) #datagen.flow要求rank为4 # print(x.shape) datagen.fit(x) prefix = filename.split('.')[0] print(prefix) counter = 0 for batch in datagen.flow(x, batch_size=4 , save_to_dir='generater_pic', save_prefix=prefix, save_format='jpg'): counter += 1 if counter > 100: break # 否则生成器会退出循环
二、数据集的处理
1.缩放图片
接下来对这21500张照片进行处理,首先要把每张照片缩放到64*64的尺寸,这么做的原因如下:
- 不同手机拍出的照片的size各不相同,要统一
- 如果手机拍出来的高分辨率图片,太大,GPU显存有限,要压缩下,减少体积。
- APP通过手机摄像头拍摄出来的照片,不同机型有差异,要统一。
对图片的缩放不能简单的直接缩小尺寸,那样的话会失真严重。所以要用到一些缩放算法,TensorFlow中已经提供了四种缩放算法,分别为: 双线性插值法(Bilinear interpolation)、最近邻居法(Nearest neighbor interpolation)、双三次插值法(Bicubic interpolation)和面积插值法(area interpolation)。 我这里使用了面积插值法(area interpolation)。代码为:
#压缩图片,把图片压缩成64*64的 def resize_img(): dirs = os.listdir("split_pic//6") for filename in dirs: im = tf.gfile.FastGFile("split_pic//6//{}".format(filename), 'rb').read() # print("正在处理第%d张照片"%counter) with tf.Session() as sess: img_data = tf.image.decode_jpeg(im) image_float = tf.image.convert_image_dtype(img_data, tf.float32) resized = tf.image.resize_images(image_float, [64, 64], method=3) resized_im = resized.eval() # new_mat = np.asarray(resized_im).reshape(1, 64, 64, 3) scipy.misc.imsave("resized_img6//{}".format(filename),resized_im)
2.把图片转成 .h5文件
h5文件的种种好处,这里不再累述。我们首先把图片转成RGB矩阵,即每个图片是一个64643的矩阵(因为是彩色图片,所以通道是3)。这里不做归一化,因为我认为归一化应该在你用到的时候自己代码归一化,如果直接把数据集做成了归一化,有点死板了,不灵活。在我们把矩阵存进h5文件时,此时标签一定要对应每一张图片(矩阵),直接上代码:
#图片转h5文件 def image_to_h5(): dirs = os.listdir("resized_img") Y = [] #label X = [] #data print(len(dirs)) for filename in dirs: label = int(filename.split('_')[0]) Y.append(label) im = Image.open("resized_img//{}".format(filename)).convert('RGB') mat = np.asarray(im) #image 转矩阵 X.append(mat) file = h5py.File("dataset//data.h5","w") file.create_dataset('X', data=np.array(X)) file.create_dataset('Y', data=np.array(Y)) file.close() #test # data = h5py.File("dataset//data.h5","r") # X_data = data['X'] # print(X_data.shape) # Y_data = data['Y'] # print(Y_data[123]) # image = Image.fromarray(X_data[123]) #矩阵转图片并显示 # image.show()
训练模型
接下来就是训练模型了,首先把数据集划分为训练集和测试集,然后先坐下归一化,把标签转化为one-hot向量表示,代码如下:
#load dataset def load_dataset(): #划分训练集、测试集 data = h5py.File("dataset//data.h5","r") X_data = np.array(data['X']) #data['X']是h5py._hl.dataset.Dataset类型,转化为array Y_data = np.array(data['Y']) # print(type(X_data)) X_train, X_test, y_train, y_test = train_test_split(X_data, Y_data, train_size=0.9, test_size=0.1, random_state=22) # print(X_train.shape) # print(y_train[456]) # image = Image.fromarray(X_train[456]) # image.show() # y_train = y_train.reshape(1,y_train.shape[0]) # y_test = y_test.reshape(1,y_test.shape[0]) print(X_train.shape) # print(X_train[0]) X_train = X_train / 255. # 归一化 X_test = X_test / 255. # print(X_train[0]) # one-hot y_train = np_utils.to_categorical(y_train, num_classes=11) print(y_train.shape) y_test = np_utils.to_categorical(y_test, num_classes=11) print(y_test.shape) return X_train, X_test, y_train, y_test
构建CNN模型,这里用了最简单的类LeNet-5,具体两层卷积层、两层池化层、一层全连接层,一层softmax输出。具体的小trick有:dropout、relu、regularize、mini-batch、adam。具体看代码吧:
def weight_variable(shape): tf.set_random_seed(1) return tf.Variable(tf.truncated_normal(shape, stddev=0.1)) def bias_variable(shape): return tf.Variable(tf.constant(0.0, shape=shape)) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME') def max_pool_2x2(z): return tf.nn.max_pool(z, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') def random_mini_batches(X, Y, mini_batch_size=16, seed=0): """ Creates a list of random minibatches from (X, Y) Arguments: X -- input data, of shape (input size, number of examples) Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) mini_batch_size - size of the mini-batches, integer seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours. Returns: mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y) """ m = X.shape[0] # number of training examples mini_batches = [] np.random.seed(seed) # Step 1: Shuffle (X, Y) permutation = list(np.random.permutation(m)) shuffled_X = X[permutation] shuffled_Y = Y[permutation,:].reshape((m, Y.shape[1])) # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case. num_complete_minibatches = math.floor(m / mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning for k in range(0, num_complete_minibatches): mini_batch_X = shuffled_X[k * mini_batch_size: k * mini_batch_size + mini_batch_size] mini_batch_Y = shuffled_Y[k * mini_batch_size: k * mini_batch_size + mini_batch_size] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) # Handling the end case (last mini-batch < mini_batch_size) if m % mini_batch_size != 0: mini_batch_X = shuffled_X[num_complete_minibatches * mini_batch_size: m] mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size: m] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches def cnn_model(X_train, y_train, X_test, y_test, keep_prob, lamda, num_epochs = 450, minibatch_size = 16): X = tf.placeholder(tf.float32, [None, 64, 64, 3], name="input_x") y = tf.placeholder(tf.float32, [None, 11], name="input_y") kp = tf.placeholder_with_default(1.0, shape=(), name="keep_prob") lam = tf.placeholder(tf.float32, name="lamda") #conv1 W_conv1 = weight_variable([5,5,3,32]) b_conv1 = bias_variable([32]) z1 = tf.nn.relu(conv2d(X, W_conv1) + b_conv1) maxpool1 = max_pool_2x2(z1) #max_pool1完后maxpool1维度为[?,32,32,32] #conv2 W_conv2 = weight_variable([5,5,32,64]) b_conv2 = bias_variable([64]) z2 = tf.nn.relu(conv2d(maxpool1, W_conv2) + b_conv2) maxpool2 = max_pool_2x2(z2) #max_pool2,shape [?,16,16,64] #conv3 效果比较好的一次模型是没有这一层,只有两次卷积层,隐藏单元100,训练20次 # W_conv3 = weight_variable([5, 5, 64, 128]) # b_conv3 = bias_variable([128]) # z3 = tf.nn.relu(conv2d(maxpool2, W_conv3) + b_conv3) # maxpool3 = max_pool_2x2(z3) # max_pool3,shape [?,8,8,128] #full connection1 W_fc1 = weight_variable([16*16*64, 200]) b_fc1 = bias_variable([200]) maxpool2_flat = tf.reshape(maxpool2, [-1, 16*16*64]) z_fc1 = tf.nn.relu(tf.matmul(maxpool2_flat, W_fc1) + b_fc1) z_fc1_drop = tf.nn.dropout(z_fc1, keep_prob=kp) #softmax layer W_fc2 = weight_variable([200, 11]) b_fc2 = bias_variable([11]) z_fc2 = tf.add(tf.matmul(z_fc1_drop, W_fc2),b_fc2, name="outlayer") prob = tf.nn.softmax(z_fc2, name="probability") #cost function regularizer = tf.contrib.layers.l2_regularizer(lam) regularization = regularizer(W_fc1) + regularizer(W_fc2) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=z_fc2)) + regularization train = tf.train.AdamOptimizer().minimize(cost) # output_type='int32', name="predict" pred = tf.argmax(prob, 1, output_type="int32", name="predict") # 输出结点名称predict方便后面保存为pb文件 correct_prediction = tf.equal(pred, tf.argmax(y, 1, output_type='int32')) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.set_random_seed(1) # to keep consistent results seed = 0 init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for epoch in range(num_epochs): seed = seed + 1 epoch_cost = 0. num_minibatches = int(X_train.shape[0] / minibatch_size) minibatches = random_mini_batches(X_train, y_train, minibatch_size, seed) for minibatch in minibatches: (minibatch_X, minibatch_Y) = minibatch _, minibatch_cost = sess.run([train, cost], feed_dict={X: minibatch_X, y: minibatch_Y, kp: keep_prob, lam: lamda}) epoch_cost += minibatch_cost / num_minibatches if epoch % 10 == 0: print("Cost after epoch %i: %f" % (epoch, epoch_cost)) print(str((time.strftime('%Y-%m-%d %H:%M:%S')))) # 这个accuracy是前面的accuracy,tensor.eval()和Session.run区别很小 train_acc = accuracy.eval(feed_dict={X: X_train[:1000], y: y_train[:1000], kp: 0.8, lam: lamda}) print("train accuracy", train_acc) test_acc = accuracy.eval(feed_dict={X: X_test[:1000], y: y_test[:1000], lam: lamda}) print("test accuracy", test_acc) #save model saver = tf.train.Saver({'W_conv1':W_conv1, 'b_conv1':b_conv1, 'W_conv2':W_conv2, 'b_conv2':b_conv2, 'W_fc1':W_fc1, 'b_fc1':b_fc1, 'W_fc2':W_fc2, 'b_fc2':b_fc2}) saver.save(sess, "model_500_200_c3//cnn_model.ckpt") #将训练好的模型保存为.pb文件,方便在Android studio中使用 output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def, output_node_names=['predict']) with tf.gfile.FastGFile('model_500_200_c3//digital_gesture.pb', mode='wb') as f: # ’wb’中w代表写文件,b代表将数据以二进制方式写入文件。 f.write(output_graph_def.SerializeToString())
这里有一个非常非常非常重要的事情,要注意,具体请参考上一篇博客中的 2. 模型训练注意事项 链接为:将TensorFlow训练好的模型迁移到Android APP上(TensorFlowLite)。整个模型训练几个小时即可,当然调参更是门艺术活,不多说了。
这里小小感慨下,i7-7700k跑一个epoch需要2分钟,750ti需要36秒,1070需要6秒。。。这里再次感谢宋俞璋的神机。。关于如何搭建TensorFlow GPU环境,请参见我的博客:ubuntu16.04+GTX750ti+python3.6.5配置cuda9.0+cudnn7.05+TensorFlow-gpu1.8.0
训练完的模型性能:
但是在APP上因为面临的环境更加复杂,准备远没有这么高。
PC端随便实测的效果图:
4.在Android Studio中调用训练好的模型
关于如何把模型迁移到Android studio中,请参考我的上一篇博客:将TensorFlow训练好的模型迁移到Android APP上(TensorFlowLite)。这里面解释下为何会用到OpenCV,这一切都要源于那个图片缩放,还记得我们在上面提到的area interpolation吗,这个算法不像那些双线性插值法等,网上并没有java版本的实现,无奈去仔细翻了遍TensorFlow API文档,发现这么一段话:
Each output pixel is computed by first transforming the pixel’s footprint into the input tensor and then averaging the pixels that intersect the footprint. An input pixel’s contribution to the average is weighted by the fraction of its area that intersects the footprint. This is the same as OpenCV’s INTER_AREA.
这就是为什么会用OpenCV了,OpenCV在Android studio中的配置也是坑多,具体的配置请参见我的博客:Android Studio中配置OpenCV。这里只说下,TensorFlowLite只提供了几个简单的接口,虽然在我的博客将TensorFlow训练好的模型迁移到Android APP上(TensorFlowLite)也提过了,但是这里还是想提一下,提供的接口官网地址
// Load the model from disk. TensorFlowInferenceInterface inferenceInterface = new TensorFlowInferenceInterface(assetManager, modelFilename); // Copy the input data into TensorFlow. inferenceInterface.feed(inputName, floatValues, 1, inputSize, inputSize, 3); // Run the inference call. inferenceInterface.run(outputNames, logStats); // Copy the output Tensor back into the output array. inferenceInterface.fetch(outputName, outputs);
注释也都说明了各个接口的作用,就不多说了。
我也不知道是不是因为OpenCV里的area interpolation算法实现的和TensorFlow不一样还是其他什么原因,总感觉在APP上测得效果要比在PC上模型性能差。。也许有可能只是我感觉。。
关于Android APP代码也没啥好说的了,代码都放到github上了,地址:Chinese-number-gestures-recognition,欢迎star,哈哈。
下面上几张测试的效果图吧,更多的展示效果见github,:Chinese-number-gestures-recognition
看到这儿,学会了吗?
最后,小编为大家准备了 从零基础到大佬的Android视频教程,先转发+关注,然后
私信小编“资料”就可以啦!
相关推荐
- Whoosh,纯python编写轻量级搜索工具
-
引言在许多应用程序中,搜索功能是至关重要的。Whoosh是一个纯Python编写的轻量级搜索引擎库,可以帮助我们快速构建搜索功能。无论是在网站、博客还是本地应用程序中,Whoosh都能提供高效的全文搜...
- 如何用Python实现二分搜索算法(python二分法查找代码)
-
如何用Python实现二分搜索算法二分搜索(BinarySearch)是一种高效的查找算法,适用于在有序数组中快速定位目标值。其核心思想是通过不断缩小搜索范围,每次将问题规模减半,时间复杂度为(O...
- 路径扫描 -- dirsearch(路径查找器怎么使用)
-
外表干净是尊重别人,内心干净是尊重自己,干净,在今天这个时代,应该是一种极高的赞美和珍贵。。。----网易云热评一、软件介绍Dirsearch是一种命令行工具,可以强制获取web服务器中的目录和文件...
- 78行Python代码帮你复现微信撤回消息!
-
来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。...
- 从零开始学习 Python!2《进阶知识》 Python进阶之路
-
欢迎来到Python学习的进阶篇章!如果你说已经掌握了基础语法,那么这篇就是你开启高手之路的大门。我们将一起探讨面向对象编程...
- 白帽黑客如何通过dirsearch脚本工具扫描和收集网站敏感文件
-
一、背景介绍...
- Python之txt数据预定替换word预定义定位标记生成word报告(四)
-
续接Python之txt数据预定替换word预定义定位标记生成word报告(一)https://mp.toutiao.com/profile_v4/graphic/preview?pgc_id=748...
- Python——字符串和正则表达式中的反斜杠('\')问题详解
-
在本篇文章里小编给大家整理的是关于Python字符串和正则表达式中的反斜杠('\')问题以及相关知识点,有需要的朋友们可以学习下。在Python普通字符串中在Python中,我们用'\'来转义某些普通...
- Python re模块:正则表达式综合指南
-
Python...
- python之re模块(python re模块sub)
-
re模块一.re模块的介绍1.什么是正则表达式"定义:正则表达式是一种对字符和特殊字符操作的一种逻辑公式,从特定的字符中,用正则表达字符来过滤的逻辑。(也是一种文本模式;)2、正则表达式可以帮助我们...
- MySQL、PostgreSQL、SQL Server 数据库导入导出实操全解
-
在数字化时代,数据是关键资产,数据库的导入导出操作则是连接数据与应用场景的桥梁。以下是常见数据库导入导出的实用方法及代码,包含更多细节和特殊情况处理,助你应对各种实际场景。一、MySQL数据库...
- Zabbix监控系统系列之六:监控 mysql
-
zabbix监控mysql1、监控规划在创建监控项之前要尽量考虑清楚要监控什么,怎么监控,监控数据如何存储,监控数据如何展现,如何处理报警等。要进行监控的系统规划需要对Zabbix很了解,这里只是...
- mysql系列之一文详解Navicat工具的使用(二)
-
本章内容是系列内容的第二部分,主要介绍Navicat工具的使用。若查看第一部分请见:...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Whoosh,纯python编写轻量级搜索工具
- 如何用Python实现二分搜索算法(python二分法查找代码)
- 路径扫描 -- dirsearch(路径查找器怎么使用)
- 78行Python代码帮你复现微信撤回消息!
- 从零开始学习 Python!2《进阶知识》 Python进阶之路
- 白帽黑客如何通过dirsearch脚本工具扫描和收集网站敏感文件
- Python之txt数据预定替换word预定义定位标记生成word报告(四)
- 假期苦短,我用Python!这有个自动回复拜年信息的小程序
- Python——字符串和正则表达式中的反斜杠('\')问题详解
- Python re模块:正则表达式综合指南
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)