百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

如何找到时序数据中线性的趋势(时序数据分析算法)

ztj100 2024-11-08 15:06 16 浏览 0 评论


有时需要从时序数据中删除趋势,为下一步或数据清理过程的一部分做准备。如果您可以确定趋势,那么只需从数据中减去它,结果就是非趋势数据。

如果趋势是线性的,你可以通过线性回归找到它。但如果趋势不是线性的呢?我们一会儿就会看到我们能做些什么。

但是在此之前,我们先看看什么叫线性趋势

线性趋势

下面是带有趋势的时序数据:

https://raw.githubusercontent.com/FlorinAndrei/misc/master/qdata.csv

让我们加载它,看看它是什么样子:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import mean_squared_error, r2_scoreser = pd.read_csv('qdata.csv', index_col=0, squeeze=True)
serx
0      473.917764
1       75.324825
2     -306.969479
3       53.271476
4      372.966686
         ...     
95    4650.550473
96    4604.573344
97    4891.704638
98    5265.948162
99    5618.909339
Name: y, Length: 100, dtype: float64plt.plot(ser)
plt.show()


好的,这里有一个趋势。我们假设它是线性的,我们来做线性回归来找出答案。这是线性回归的一个直接应用。上面导入的sklearn库拥有我们进行回归所需要的一切。

X = ser.index
X = np.reshape(X, (len(X), 1))
y = ser.valuesmodel = LinearRegression()
model.fit(X, y)
trend = model.predict(X)plt.plot(y)
plt.plot(trend)
plt.legend(['data', 'trend'])
plt.show()


看起来很合适,但可能不是很合适。让我们从数据中减去趋势,看看非趋势数据是什么样的:

detr = [y[i] - trend[i] for i in range(0, len(y))]
plt.plot(detr)
plt.title('data detrended in a linear fashion')
plt.show()


不是很令人信服。数据中仍有一个凹的趋势。最初的趋势可能不是线性的。

让我们计算数据和我们提取的趋势之间的RMSE和R2。

r2 = r2_score(y, trend)
rmse = np.sqrt(mean_squared_error(y, trend))
print('r2:', r2)
print('rmse', rmse)
r2: 0.8782399672701933
rmse 553.6078593008505

多项式趋势

如果趋势不是线性的,我们可以尝试用多项式曲线来拟合它。但问题是:即使我们拟合的曲线是高次多项式,我们仍然可以用线性回归来找到它。

考虑这个二次表达式:

y = a + bx + cx2

我们要找的值是a, b, c,和他们都是线性的。忘记x的权重,我们看的是权重,b和c,所以线性回归——它只是发生,我们将不得不在多个维度做线性回归。

假设数据呈二次趋势。然后我们需要把X变换成二次形式:

pf = PolynomialFeatures(degree=2)
Xp = pf.fit_transform(X)
Xp
array([[1.000e+00, 0.000e+00, 0.000e+00],
       [1.000e+00, 1.000e+00, 1.000e+00],
       [1.000e+00, 2.000e+00, 4.000e+00],
       [1.000e+00, 3.000e+00, 9.000e+00],
       [1.000e+00, 4.000e+00, 1.600e+01],
       [1.000e+00, 5.000e+00, 2.500e+01],
       [1.000e+00, 6.000e+00, 3.600e+01],
...
       [1.000e+00, 9.600e+01, 9.216e+03],
       [1.000e+00, 9.700e+01, 9.409e+03],
       [1.000e+00, 9.800e+01, 9.604e+03],
       [1.000e+00, 9.900e+01, 9.801e+03]])

第一列是X的0次方。第二列是X,第三列是X的2次方。这就像上面显示的二次表达式(y = a + bx + cx)

现在我们将使用二次形式来拟合数据并生成二次趋势。用线性回归方法求出二次表达式的参数。

md2 = LinearRegression()
md2.fit(Xp, y)
trendp = md2.predict(Xp)

趋势是怎样的?

plt.plot(X, y)
plt.plot(X, trendp)
plt.legend(['data', 'polynomial trend'])
plt.show()


更接近了,不是吗?现在让我们看看非趋势数据:

detrpoly = [y[i] - trendp[i] for i in range(0, len(y))]
plt.plot(X, detrpoly)
plt.title('polynomially detrended data')
plt.show()


这显然更好。没有任何可以从视觉上看出的趋势。但是让我们看看数字是怎么说的:

r2 = r2_score(y, trendp)
rmse = np.sqrt(mean_squared_error(y, trendp))
print('r2:', r2)
print('rmse', rmse)
r2: 0.9343217231542871
rmse 406.5937924291518

与线性趋势相比,随着多项式趋势,R2曲线增大,RMSE减小。两者都是好的改变。两种均值多项式的拟合效果都优于线性拟合。

高阶多项式

你可以选择任意阶的多项式只要在这里给N赋不同的值:

pf = PolynomialFeatures(degree=N)

一般来说,对N使用较低的值。如果增加了N,发生的情况不太严重,则返回较小的值。

只有一个弯曲的曲线可以用二次函数来描述。有两个弯的曲线可以用三次函数来描述。等等。N-1弯需要一个N次幂的表达式。

如果N增加很多,最终你的"最佳拟合"曲线将开始跟随数据中的杂音,而不是拟合趋势。你已经超拟合了曲线,现在没有意义了。或者减少N,或者增加更多数据点。

这样我们将这个线性模型的数据去除(差值),使用剩余的数据进行时间序列的训练,可以得到更精确的结果

相关推荐

从IDEA开始,迈进GO语言之门(idea got)

前言笔者在学习GO语言编程的时候,GO语言在国内还没有像JAVA/Php/Python那样普及,绕了不少的弯路,要开始入门学习一门编程语言,最好就先从选择一个好的编程语言的开发环境开始,有了这个开发环...

基于SpringBoot+MyBatis的私人影院java网上购票jsp源代码Mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目介绍基于SpringBoot...

基于springboot的个人服装管理系统java网上商城jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目介绍基于springboot...

基于springboot的美食网站Java食品销售jsp源代码Mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目介绍基于springboot...

贸易管理进销存springboot云管货管账分析java jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目描述贸易管理进销存spring...

SpringBoot+VUE员工信息管理系统Java人员管理jsp源代码Mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目介绍SpringBoot+V...

目前见过最牛的一个SpringBoot商城项目(附源码)还有人没用过吗

帮粉丝找了一个基于SpringBoot的天猫商城项目,快速部署运行,所用技术:MySQL,Druid,Log4j2,Maven,Echarts,Bootstrap...免费给大家分享出来前台演示...

SpringBoot+Mysql实现的手机商城附带源码演示导入视频

今天为大家带来的是基于SpringBoot+JPA+Thymeleaf框架的手机商城管理系统,商城系统分为前台和后台、前台用的是Bootstrap框架后台用的是SpringBoot+JPA都是现在主...

全网首发!马士兵内部共享—1658页《Java面试突击核心讲》

又是一年一度的“金九银十”秋招大热门,为助力广大程序员朋友“面试造火箭”,小编今天给大家分享的便是这份马士兵内部的面试神技——1658页《Java面试突击核心讲》!...

SpringBoot数据库操作的应用(springboot与数据库交互)

1.JDBC+HikariDataSource...

SpringBoot 整合 Flink 实时同步 MySQL

1、需求在Flink发布SpringBoot打包的jar包能够实时同步MySQL表,做到原表进行新增、修改、删除的时候目标表都能对应同步。...

SpringBoot + Mybatis + Shiro + mysql + redis智能平台源码分享

后端技术栈基于SpringBoot+Mybatis+Shiro+mysql+redis构建的智慧云智能教育平台基于数据驱动视图的理念封装element-ui,即使没有vue的使...

Springboot+Mysql舞蹈课程在线预约系统源码附带视频运行教程

今天发布的是由【猿来入此】的优秀学员独立做的一个基于springboot脚手架的Springboot+Mysql舞蹈课程在线预约系统,系统项目源代码在【猿来入此】获取!https://www.yuan...

SpringBoot+Mysql在线众筹系统源码+讲解视频+开发文档(参考论文

今天发布的是由【猿来入此】的优秀学员独立做的一个基于springboot脚手架的在线众筹管理系统,主要实现了普通用户在线参与众筹基本操作流程的全部功能,系统分普通用户、超级管理员等角色,除基础脚手架外...

Docker一键部署 SpringBoot 应用的方法,贼快贼好用

这两天发现个Gradle插件,支持一键打包、推送Docker镜像。今天我们来讲讲这个插件,希望对大家有所帮助!GradleDockerPlugin简介...

取消回复欢迎 发表评论: