Day236:addmm()和addmm_()的用法详解
ztj100 2024-11-03 16:15 29 浏览 0 评论
函数解释
在torch/_C/_VariableFunctions.py的有该定义,意义就是实现一下公式:
换句话说,就是需要传入5个参数,mat里的每个元素乘以beta,mat1和mat2进行矩阵乘法(左行乘右列)后再乘以alpha,最后将这2个结果加在一起。但是这样说可能没啥概念,接下来博主为大家写上一段代码,大家就明白了~
def addmm(self, beta=1, mat, alpha=1, mat1, mat2, out=None): # real signature unknown; restored from __doc__
"""
addmm(beta=1, mat, alpha=1, mat1, mat2, out=None) -> Tensor
Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`.
The matrix :attr:`mat` is added to the final result.
If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a
:math:`(m \times p)` tensor, then :attr:`mat` must be
:ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor
and :attr:`out` will be a :math:`(n \times p)` tensor.
:attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between
:attr:`mat1` and :attr`mat2` and the added matrix :attr:`mat` respectively.
.. math::
out = \beta\ mat + \alpha\ (mat1_i \mathbin{@} mat2_i)
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers.
Args:
beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
mat (Tensor): matrix to be added
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
mat1 (Tensor): the first matrix to be multiplied
mat2 (Tensor): the second matrix to be multiplied
out (Tensor, optional): the output tensor
Example::
>>> M = torch.randn(2, 3)
>>> mat1 = torch.randn(2, 3)
>>> mat2 = torch.randn(3, 3)
>>> torch.addmm(M, mat1, mat2)
tensor([[-4.8716, 1.4671, -1.3746],
[ 0.7573, -3.9555, -2.8681]])
"""
pass
代码范例
1.先摆出代码,大家可以先复制粘贴运行一下,在之后会一一讲解
"""
@author:nickhuang1996
"""
import torch
rectangle_height = 3
rectangle_width = 3
inputs = torch.randn(rectangle_height, rectangle_width)
for i in range(rectangle_height):
for j in range(rectangle_width):
inputs[i] = i * torch.ones(rectangle_width)
'''
inputs and its transpose
-->inputs = tensor([[0., 0., 0.],
[1., 1., 1.],
[2., 2., 2.]])
-->inputs_t = tensor([[0., 1., 2.],
[0., 1., 2.],
[0., 1., 2.]])
'''
print("inputs:\n", inputs)
inputs_t = inputs.t()
print("inputs_t:\n", inputs_t)
'''
inputs_t @ inputs_t [[0., 1., 2.], [[0., 1., 2.], [[0., 3., 6.]
= [0., 1., 2.], @ [0., 1., 2.], = [0., 3., 6.]
[0., 1., 2.]] [0., 1., 2.]] [0., 3., 6.]]
'''
'''a, b, c and d = 1 * inputs + 1 * (inputs_t @ inputs_t)'''
a = torch.addmm(input=inputs, mat1=inputs_t, mat2=inputs_t)
b = inputs.addmm(mat1=inputs_t, mat2=inputs_t)
c = torch.addmm(input=inputs, beta=1, mat1=inputs_t, mat2=inputs_t, alpha=1)
d = inputs.addmm(beta=1, mat1=inputs_t, mat2=inputs_t, alpha=1)
'''e and f = 1 * inputs + 1 * (inputs_t @ inputs_t)'''
e = torch.addmm(inputs, inputs_t, inputs_t)
f = inputs.addmm(inputs_t, inputs_t)
'''1 * inputs + 1 * (inputs_t @ inputs_t)'''
g = inputs.addmm(1, inputs_t, inputs_t)
'''2 * inputs + 1 * (inputs_t @ inputs_t)'''
g2 = inputs.addmm(2, inputs_t, inputs_t)
'''h = 1 * inputs + 1 * (inputs_t @ inputs_t)'''
h = inputs.addmm(1, 1, inputs_t, inputs_t)
'''h12 = 1 * inputs + 2 * (inputs_t @ inputs_t)'''
h12 = inputs.addmm(1, 2, inputs_t, inputs_t)
'''h21 = 2 * inputs + 1 * (inputs_t @ inputs_t)'''
h21 = inputs.addmm(2, 1, inputs_t, inputs_t)
print("a:\n", a)
print("b:\n", b)
print("c:\n", c)
print("d:\n", d)
print("e:\n", e)
print("f:\n", f)
print("g:\n", g)
print("g2:\n", g2)
print("h:\n", h)
print("h12:\n", h12)
print("h21:\n", h21)
print("inputs:\n", inputs)
'''inputs = 1 * inputs - 2 * (inputs @ inputs_t)'''
'''
inputs @ inputs_t [[0., 0., 0.], [[0., 1., 2.], [[0., 0., 0.]
= [1., 1., 1.], @ [0., 1., 2.], = [0., 3., 6.]
[2., 2., 2.]] [0., 1., 2.]] [0., 6., 12.]]
'''
inputs.addmm_(1, -2, inputs, inputs_t) # In-place
print("inputs:\n", inputs)
2.其中
inputs是一个3×3的矩阵,为
tensor([[0., 0., 0.],
[1., 1., 1.],
[2., 2., 2.]])
inputs_t也是一个3×3的矩阵,是inputs的转置矩阵,为
tensor([[0., 1., 2.],
[0., 1., 2.],
[0., 1., 2.]])
* inputs_t @ inputs_t为
'''
inputs_t @ inputs_t [[0., 1., 2.], [[0., 1., 2.], [[0., 3., 6.]
= [0., 1., 2.], @ [0., 1., 2.], = [0., 3., 6.]
[0., 1., 2.]] [0., 1., 2.]] [0., 3., 6.]]
'''
3.代码中a,b,c和d展示的是完全形式,即标明了位置参数和传入参数。可以看到input这个位置参数可以写在函数的前面,即
torch.addmm(input, mat1, mat2) = inputs.addmm(mat1, mat2)
完成的公式为:
1 × inputs + 1 ×(inputs_t @ inputs_t)
'''a, b, c and d = 1 * inputs + 1 * (inputs_t @ inputs_t)'''
a = torch.addmm(input=inputs, mat1=inputs_t, mat2=inputs_t)
b = inputs.addmm(mat1=inputs_t, mat2=inputs_t)
c = torch.addmm(input=inputs, beta=1, mat1=inputs_t, mat2=inputs_t, alpha=1)
d = inputs.addmm(beta=1, mat1=inputs_t, mat2=inputs_t, alpha=1)
a:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
b:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
c:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
d:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
4.下面的例子更好了说明了input参数的位置可变性,并且beta和alpha都缺省了:
完成的公式为:
1 × inputs + 1 ×(inputs_t @ inputs_t)
'''e and f = 1 * inputs + 1 * (inputs_t @ inputs_t)'''
e = torch.addmm(inputs, inputs_t, inputs_t)
f = inputs.addmm(inputs_t, inputs_t)
e:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
f:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
5.加一个参数,实际上是添加了beta这个参数
完成的公式为:
g = 1 × inputs + 1 ×(inputs_t @ inputs_t)
g2 = 2 × inputs + 1 ×(inputs_t @ inputs_t)
'''1 * inputs + 1 * (inputs_t @ inputs_t)'''
g = inputs.addmm(1, inputs_t, inputs_t)
'''2 * inputs + 1 * (inputs_t @ inputs_t)'''
g2 = inputs.addmm(2, inputs_t, inputs_t)
g:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
g2:
tensor([[ 0., 3., 6.],
[ 2., 5., 8.],
[ 4., 7., 10.]])
6.再加一个参数,实际上是添加了alpha这个参数
完成的公式为:
h = 1 × inputs + 1 ×(inputs_t @ inputs_t)
h12 = 1 × inputs + 2 ×(inputs_t @ inputs_t)
h21 = 2 × inputs + 1 ×(inputs_t @ inputs_t)
'''h = 1 * inputs + 1 * (inputs_t @ inputs_t)'''
h = inputs.addmm(1, 1, inputs_t, inputs_t)
'''h12 = 1 * inputs + 2 * (inputs_t @ inputs_t)'''
h12 = inputs.addmm(1, 2, inputs_t, inputs_t)
'''h21 = 2 * inputs + 1 * (inputs_t @ inputs_t)'''
h21 = inputs.addmm(2, 1, inputs_t, inputs_t)
h:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
h12:
tensor([[ 0., 6., 12.],
[ 1., 7., 13.],
[ 2., 8., 14.]])
h21:
tensor([[ 0., 3., 6.],
[ 2., 5., 8.],
[ 4., 7., 10.]])
7.当然,以上的步骤inputs没有变化,还是为
inputs:
tensor([[0., 0., 0.],
[1., 1., 1.],
[2., 2., 2.]])
*8.addmm_()的操作和addmm()函数功能相同,区别就是addmm_()有inplace的操作,也就是在原对象基础上进行修改,即把改变之后的变量再赋给原来的变量。例如:
inputs的值变成了改变之后的值,不用再去写 某个变量=addmm_() 了,因为inputs就是改变之后的变量!
*inputs@ inputs_t为
'''
inputs @ inputs_t [[0., 0., 0.], [[0., 1., 2.], [[0., 0., 0.]
= [1., 1., 1.], @ [0., 1., 2.], = [0., 3., 6.]
[2., 2., 2.]] [0., 1., 2.]] [0., 6., 12.]]
'''
完成的公式为:
inputs = 1 × inputs - 2 ×(inputs @ inputs_t)
'''inputs = 1 * inputs - 2 * (inputs @ inputs_t)'''
inputs.addmm_(1, -2, inputs, inputs_t) # In-place
inputs:
tensor([[ 0., 0., 0.],
[ 1., -5., -11.],
[ 2., -10., -22.]])
三、代码运行结果
inputs:
tensor([[0., 0., 0.],
[1., 1., 1.],
[2., 2., 2.]])
inputs_t:
tensor([[0., 1., 2.],
[0., 1., 2.],
[0., 1., 2.]])
a:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
b:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
c:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
d:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
e:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
f:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
g:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
g2:
tensor([[ 0., 3., 6.],
[ 2., 5., 8.],
[ 4., 7., 10.]])
h:
tensor([[0., 3., 6.],
[1., 4., 7.],
[2., 5., 8.]])
h12:
tensor([[ 0., 6., 12.],
[ 1., 7., 13.],
[ 2., 8., 14.]])
h21:
tensor([[ 0., 3., 6.],
[ 2., 5., 8.],
[ 4., 7., 10.]])
inputs:
tensor([[0., 0., 0.],
[1., 1., 1.],
[2., 2., 2.]])
inputs:
tensor([[ 0., 0., 0.],
[ 1., -5., -11.],
[ 2., -10., -22.]])
原文:https://blog.csdn.net/qq_36556893/article/details/90638449
相关推荐
- sharding-jdbc实现`分库分表`与`读写分离`
-
一、前言本文将基于以下环境整合...
- 三分钟了解mysql中主键、外键、非空、唯一、默认约束是什么
-
在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。...
- MySQL8行级锁_mysql如何加行级锁
-
MySQL8行级锁版本:8.0.34基本概念...
- mysql使用小技巧_mysql使用入门
-
1、MySQL中有许多很实用的函数,好好利用它们可以省去很多时间:group_concat()将取到的值用逗号连接,可以这么用:selectgroup_concat(distinctid)fr...
- MySQL/MariaDB中如何支持全部的Unicode?
-
永远不要在MySQL中使用utf8,并且始终使用utf8mb4。utf8mb4介绍MySQL/MariaDB中,utf8字符集并不是对Unicode的真正实现,即不是真正的UTF-8编码,因...
- 聊聊 MySQL Server 可执行注释,你懂了吗?
-
前言MySQLServer当前支持如下3种注释风格:...
- MySQL系列-源码编译安装(v5.7.34)
-
一、系统环境要求...
- MySQL的锁就锁住我啦!与腾讯大佬的技术交谈,是我小看它了
-
对酒当歌,人生几何!朝朝暮暮,唯有己脱。苦苦寻觅找工作之间,殊不知今日之事乃我心之痛,难道是我不配拥有工作嘛。自面试后他所谓的等待都过去一段时日,可惜在下京东上的小金库都要见低啦。每每想到不由心中一...
- MySQL字符问题_mysql中字符串的位置
-
中文写入乱码问题:我输入的中文编码是urf8的,建的库是urf8的,但是插入mysql总是乱码,一堆"???????????????????????"我用的是ibatis,终于找到原因了,我是这么解决...
- 深圳尚学堂:mysql基本sql语句大全(三)
-
数据开发-经典1.按姓氏笔画排序:Select*FromTableNameOrderByCustomerNameCollateChinese_PRC_Stroke_ci_as//从少...
- MySQL进行行级锁的?一会next-key锁,一会间隙锁,一会记录锁?
-
大家好,是不是很多人都对MySQL加行级锁的规则搞的迷迷糊糊,一会是next-key锁,一会是间隙锁,一会又是记录锁。坦白说,确实还挺复杂的,但是好在我找点了点规律,也知道如何如何用命令分析加...
- 一文讲清怎么利用Python Django实现Excel数据表的导入导出功能
-
摘要:Python作为一门简单易学且功能强大的编程语言,广受程序员、数据分析师和AI工程师的青睐。本文系统讲解了如何使用Python的Django框架结合openpyxl库实现Excel...
- 用DataX实现两个MySQL实例间的数据同步
-
DataXDataX使用Java实现。如果可以实现数据库实例之间准实时的...
- MySQL数据库知识_mysql数据库基础知识
-
MySQL是一种关系型数据库管理系统;那废话不多说,直接上自己以前学习整理文档:查看数据库命令:(1).查看存储过程状态:showprocedurestatus;(2).显示系统变量:show...
- 如何为MySQL中的JSON字段设置索引
-
背景MySQL在2015年中发布的5.7.8版本中首次引入了JSON数据类型。自此,它成了一种逃离严格列定义的方式,可以存储各种形状和大小的JSON文档,例如审计日志、配置信息、第三方数据包、用户自定...
你 发表评论:
欢迎- 一周热门
-
-
MySQL中这14个小玩意,让人眼前一亮!
-
旗舰机新标杆 OPPO Find X2系列正式发布 售价5499元起
-
【VueTorrent】一款吊炸天的qBittorrent主题,人人都可用
-
面试官:使用int类型做加减操作,是线程安全吗
-
C++编程知识:ToString()字符串转换你用正确了吗?
-
【Spring Boot】WebSocket 的 6 种集成方式
-
PyTorch 深度学习实战(26):多目标强化学习Multi-Objective RL
-
pytorch中的 scatter_()函数使用和详解
-
与 Java 17 相比,Java 21 究竟有多快?
-
基于TensorRT_LLM的大模型推理加速与OpenAI兼容服务优化
-
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)