「Pytorch基础」torch基础介绍与简单卷积神经网络
ztj100 2024-11-03 16:15 10 浏览 0 评论
from __future__ import print_function
import torch
x=torch.Tensor(5,3)#创造未初始化矩阵
x=torch.rand(5,3)#创造随机5*3矩阵
#print(x.size())
y=torch.rand(5,3)
print(x+y)
print(torch.add(x,y))
#输出Tensor
result=torch.Tensor(5,3)
torch.add(x,y,out=result)
print(y.add_(x))
#改变tensor内容的方法都要加下划线
print(x[:,1])#输出第二列
#Tensor与numpy array共享存储空间
import numpy as np
a=np.ones(5)
b=torch.from_numpy(a)
np.add(a,1,out=a)
#print(a)
#print(b)#b随着a被改变
#启用2019年甜品级显卡1660Ti
if torch.cuda.is_available():
x=x.cuda()
y=y.cuda()
print(x+y)
#Tensor自动求导运行Autograd包,运行时定义
Variable是其核心类,一旦完成了运算,可以调用.backward()计算梯度
梯度记录在.grad属性中
每个Variable拥有一个.grad_fn属性,引用了一个创建Variable的Function,
除了用户创建的Variable其grad_fn是None
除标量外,求导方法必须传入参数grad_output,和tensor形状匹配
from torch.autograd import Variable
x=Variable(torch.ones(2,2),requires_grad=True)
y=x+2
print(y.grad_fn)
z=y*y*3
out=z.mean()#求和再除以面积
out.backward()
print(x.grad)#输出对x的导数
#定义并使用神经网络
#使用最简单的GD优化
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
self.conv1=nn.Conv2d(1,6,5)#1个输入channel,6个输出channel,5*5卷积核
self.conv2=nn.Conv2d(6,16,5)
self.fc1=nn.Linear(16*5*5,120)
self.fc2=nn.Linear(120,84)
self.fc3=nn.Linear(84,10)
def forward(self,x):
x=F.max_pool2d(F.relu(self.conv1(x)),(2,2))
x=F.max_pool2d(F.relu(self.conv2(x)),2)#size写2等价于(2,2)
x=x.view(-1,self.num_flat_features(x))#view()相当于numpy的reshape(),写-1表示不确定
x=F.relu(self.fc1(x))
x=F.relu(self.fc2(x))
x=self.fc3(x)
return x
def num_flat_features(self,x):
size=x.size()[1:]
num_features=1
for s in size:
num_features*= s
return num_features
net=Net()
print(net)
#NN的backward自动生成,模型中可学习的参数net.parameters()
params=list(net.parameters())
print(len(params))
print(params[0].size())
input=Variable(torch.randn(1,1,32,32))
out=net(input)
print(out)
out.backward(torch.randn(1,10))
output=net(input)
target=Variable(torch.range(1,10))
criterion=nn.MSELoss()
loss=criterion(output,target)
print(loss)
net.zero_grad()
loss.backward(retain_graph=True)#更新所有梯度
#GD法更新权重
lr=0.001
for f in net.parameters():
f.data.sub_(f.grad.data*lr)
#使用RMSProp更新梯度
import torch.optim as optim
optimizer=optim.RMSprop(net.parameters(),lr=0.001)
output=net(input)
loss=criterion(output,target)
loss.backward()
optimizer.step()
#图像Pillow,openCV,声音scipy librosa,文本 nltk spacy转numpy.array
相关推荐
- Whoosh,纯python编写轻量级搜索工具
-
引言在许多应用程序中,搜索功能是至关重要的。Whoosh是一个纯Python编写的轻量级搜索引擎库,可以帮助我们快速构建搜索功能。无论是在网站、博客还是本地应用程序中,Whoosh都能提供高效的全文搜...
- 如何用Python实现二分搜索算法(python二分法查找代码)
-
如何用Python实现二分搜索算法二分搜索(BinarySearch)是一种高效的查找算法,适用于在有序数组中快速定位目标值。其核心思想是通过不断缩小搜索范围,每次将问题规模减半,时间复杂度为(O...
- 路径扫描 -- dirsearch(路径查找器怎么使用)
-
外表干净是尊重别人,内心干净是尊重自己,干净,在今天这个时代,应该是一种极高的赞美和珍贵。。。----网易云热评一、软件介绍Dirsearch是一种命令行工具,可以强制获取web服务器中的目录和文件...
- 78行Python代码帮你复现微信撤回消息!
-
来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。...
- 从零开始学习 Python!2《进阶知识》 Python进阶之路
-
欢迎来到Python学习的进阶篇章!如果你说已经掌握了基础语法,那么这篇就是你开启高手之路的大门。我们将一起探讨面向对象编程...
- 白帽黑客如何通过dirsearch脚本工具扫描和收集网站敏感文件
-
一、背景介绍...
- Python之txt数据预定替换word预定义定位标记生成word报告(四)
-
续接Python之txt数据预定替换word预定义定位标记生成word报告(一)https://mp.toutiao.com/profile_v4/graphic/preview?pgc_id=748...
- Python——字符串和正则表达式中的反斜杠('\')问题详解
-
在本篇文章里小编给大家整理的是关于Python字符串和正则表达式中的反斜杠('\')问题以及相关知识点,有需要的朋友们可以学习下。在Python普通字符串中在Python中,我们用'\'来转义某些普通...
- Python re模块:正则表达式综合指南
-
Python...
- python之re模块(python re模块sub)
-
re模块一.re模块的介绍1.什么是正则表达式"定义:正则表达式是一种对字符和特殊字符操作的一种逻辑公式,从特定的字符中,用正则表达字符来过滤的逻辑。(也是一种文本模式;)2、正则表达式可以帮助我们...
- MySQL、PostgreSQL、SQL Server 数据库导入导出实操全解
-
在数字化时代,数据是关键资产,数据库的导入导出操作则是连接数据与应用场景的桥梁。以下是常见数据库导入导出的实用方法及代码,包含更多细节和特殊情况处理,助你应对各种实际场景。一、MySQL数据库...
- Zabbix监控系统系列之六:监控 mysql
-
zabbix监控mysql1、监控规划在创建监控项之前要尽量考虑清楚要监控什么,怎么监控,监控数据如何存储,监控数据如何展现,如何处理报警等。要进行监控的系统规划需要对Zabbix很了解,这里只是...
- mysql系列之一文详解Navicat工具的使用(二)
-
本章内容是系列内容的第二部分,主要介绍Navicat工具的使用。若查看第一部分请见:...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Whoosh,纯python编写轻量级搜索工具
- 如何用Python实现二分搜索算法(python二分法查找代码)
- 路径扫描 -- dirsearch(路径查找器怎么使用)
- 78行Python代码帮你复现微信撤回消息!
- 从零开始学习 Python!2《进阶知识》 Python进阶之路
- 白帽黑客如何通过dirsearch脚本工具扫描和收集网站敏感文件
- Python之txt数据预定替换word预定义定位标记生成word报告(四)
- 假期苦短,我用Python!这有个自动回复拜年信息的小程序
- Python——字符串和正则表达式中的反斜杠('\')问题详解
- Python re模块:正则表达式综合指南
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)