百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

第37期:适当的使用 MySQL 原生表分区

ztj100 2025-03-28 23:31 8 浏览 0 评论

MySQL 数据库现在主要用的引擎是 InnoDB ,InnoDB 没有类似于 MERGE 引擎这样的原生拆表方案,不过有原生分区表,以水平方式拆分记录集,对应用端透明。

分区表的存在为超大表的检索请求、日常管理提供了一种额外的选择途径。分区表使用得当,对数据库性能会有大幅提升。

分区表主要有以下几种优势:

  1. 大幅提升某些查询的性能。
  2. 简化日常数据运维工作量、提升运维效率。
  3. 并行查询、均衡写 IO 。
  4. 对应用透明,不需要在应用层部署路由或者中间层。

接下来我们用实际例子来让前两种优势体现更新清晰。

  1. 针对检索来讲:

优化查询性能(范围查询)

拆分合适的分区表,对同样的查询来讲,扫描的记录数量要比非分区表少很多,性能远比非分区表来的高效。

以下示例表 t1 为非分区表,对应的分区表为 p1 ,两张表有相同的纪录数,都为 1KW 条。

localhost:ytt> show create table t1\G
*************************** 1. row ***************************
       Table: t1
Create Table: CREATE TABLE `t1` (
  `id` int NOT NULL,
  `r1` date DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)


localhost:ytt> show create table p1\G
*************************** 1. row ***************************
       Table: p1
Create Table: CREATE TABLE `p1` (
  `id` int NOT NULL,
  `r1` date DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
/*!50100 PARTITION BY RANGE (`id`)
(PARTITION p0 VALUES LESS THAN (1000000) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (2000000) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (3000000) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (4000000) ENGINE = InnoDB,
 PARTITION p4 VALUES LESS THAN (5000000) ENGINE = InnoDB,
 PARTITION p5 VALUES LESS THAN (6000000) ENGINE = InnoDB,
 PARTITION p6 VALUES LESS THAN (7000000) ENGINE = InnoDB,
 PARTITION p7 VALUES LESS THAN (8000000) ENGINE = InnoDB,
 PARTITION p8 VALUES LESS THAN (9000000) ENGINE = InnoDB,
 PARTITION p9 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */
1 row in set (0.00 sec)

localhost:ytt> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 10000000 |
+----------+
1 row in set (0.94 sec)

localhost:ytt> select count(*) from p1;
+----------+
| count(*) |
+----------+
| 10000000 |
+----------+
1 row in set (0.92 sec)

我们来分别对两张表做范围检索,以下为执行计划:

localhost:ytt> explain format=tree select count(*) from t1 where id < 1000000\g 1. row explain: -> Aggregate: count(0)
    -> Filter: (t1.id < 1000000 cost='407495.19' rows='2030006)' -> Index range scan on t1 using PRIMARY  (cost=407495.19 rows=2030006)

1 row in set (0.00 sec)

localhost:ytt> explain format=tree select count(*) from p1 where id < 1000000\g 1. row explain: -> Aggregate: count(0)
    -> Filter: (p1.id < 1000000 cost='99980.09' rows='499369)' -> Index range scan on p1 using PRIMARY  (cost=99980.09 rows=499369)

1 row in set (0.00 sec)

表 t1 对比表 p1 的执行计划,从成本,扫描记录数来讲,前者比后者多了几倍,明显分区表比非分区表性能来的更加高效。

再来看看对两张表做不等于检索的执行计划:

localhost:ytt> explain format=tree select count(*) from t1 where id != 2000001\G
*************************** 1. row ***************************
EXPLAIN: -> Aggregate: count(0)
    -> Filter: (t1.id <> 2000001)  (cost=1829866.58 rows=9117649)
        -> Index range scan on t1 using PRIMARY  (cost=1829866.58 rows=9117649)

1 row in set (0.00 sec)

localhost:ytt> explain format=tree select count(*) from p1 where id != 2000001\G
*************************** 1. row ***************************
EXPLAIN: -> Aggregate: count(0)
    -> Filter: (p1.id <> 2000001)  (cost=1002750.23 rows=4993691)
        -> Index range scan on p1 using PRIMARY  (cost=1002750.23 rows=4993691)

1 row in set (0.00 sec)

对于这样的低效率 SQL 来讲,从执行计划结果来看,分区表从成本、扫描记录数等均比非分区表有优势。

优化写入性能(带过滤条件的 UPDATE )。

对于这类更新请求,分区表同样要比非分区表来的高效。

下面为等值过滤的更新场景下,非分区表与分区表的执行计划对比:仅仅看扫描行数即可,分区表扫描记录数比非分区表要来的更少。

localhost:ytt> explain update t1 set r1 = date_sub(current_date,interval ceil(rand()*5000) day) where id between 1000001 and 2990000\G
*************************** 1. row ***************************
           id: 1
  select_type: UPDATE
        table: t1
   partitions: NULL
         type: range
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: const
         rows: 3938068
     filtered: 100.00
        Extra: Using where
1 row in set, 1 warning (0.00 sec)

localhost:ytt> explain update p1 set r1 = date_sub(current_date,interval ceil(rand()*5000) day) where id between 1000001 and 2990000\G
*************************** 1. row ***************************
           id: 1
  select_type: UPDATE
        table: p1
   partitions: p1,p2
         type: range
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: const
         rows: 998738
     filtered: 100.00
        Extra: Using where
1 row in set, 1 warning (0.00 sec)
  1. 针对运维来讲:

分区表数据与非分区数据进行交换。

分区表的特定分区数据可以很方便的导出导入,能够快速的与非分区表数据进行交换。

创建一张表 t_p1 ,用来和表 p1 的分区 p1 交换数据。

localhost:ytt> create table t_p1 like t1;
Query OK, 0 rows affected (0.06 sec)

分区 p1 本身包含了 100W 行记录。使用分区表原生数据交换功能来交换数据,只花了 0.07 秒。

localhost:ytt> alter table p1 exchange partition p1 with table t_p1;
Query OK, 0 rows affected (0.07 sec)

查看交换后的数据, 表 p1 少了 100W 行记录,分区 p1 被清空,表 t_p1 多了 100W 行记录。

localhost:ytt> select count(*) from p1;
+----------+
| count(*) |
+----------+
|  9000000 |
+----------+
1 row in set (0.79 sec)

localhost:ytt> select count(*) from t_p1;
+----------+
| count(*) |
+----------+
|  1000000 |
+----------+
1 row in set (0.13 sec)

可以随时把数据交换回来,被交换的表清空。

localhost:ytt> alter table p1 exchange partition p1 with table t_p1;
Query OK, 0 rows affected (0.77 sec)

localhost:ytt> select count(*) from p1;
+----------+
| count(*) |
+----------+
| 10000000 |
+----------+
1 row in set (0.91 sec)

localhost:ytt> select count(*) from t_p1;
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.00 sec)

对比下非分区表的数据交换,步骤为:

  1. 选择需要交换的互换表。
  2. 从原始表选出数据导入到互换表。
  3. 删除原始表涉及到的数据。

如果此时需要把换出去的数据重新换入原始表,则需要以上步骤反着再来一遍,增加运维难度并且操作低效。

分区表置换还有一个最大的优点,就是比非分区表记录的日志量要小的多。我们来重新把上面的置换操作做一次。删除所有二进制日志。

localhost:ytt>reset master;

Query OK, 0 rows affected (0.02 sec)

做一次分区置换

localhost:ytt>alter table p1 exchange partition p2 with table t_p1;
Query OK, 0 rows affected (2.42 sec)

再次做置换删除表 t_p1 数据

localhost:ytt>alter table p1 exchange partition p2 with table t_p1;
Query OK, 0 rows affected (0.45 sec)

此时两次置换操作记录到二进制日志 ytt1.000001 里。

localhost:ytt>show master status;
...
 ytt1.000001 : 47d6eda0-6468-11ea-a026-9cb6d0e27d15:1-2 

重刷日志,非分区表置换记录。

localhost:ytt>flush logs;
Query OK, 0 rows affected (0.01 sec)


localhost:ytt>insert into t_p1 select * from p1 partition (p2) ;
Query OK, 934473 rows affected (5.25 sec)
Records: 934473  Duplicates: 0  Warnings: 0


localhost:ytt>show master status;
...
 ytt1.000002 : 47d6eda0-6468-11ea-a026-9cb6d0e27d15:1-3 

来看看具体的日志文件,ytt1.000001 只占了588个字节,而 ytt1.000002 记却要占用 7.2M 。

root@ytt-pc:/var/lib/mysql/3306# ls -sihl ytt1.00000*
2109882 4.0K -rw-r----- 1 mysql mysql  588 7月  23 11:13 ytt1.000001
2109868 7.2M -rw-r----- 1 mysql mysql 7.2M 7月  23 11:14 ytt1.000002

快速清理单个分区数据。

删除单个分区数据性能要优于非分区表删除某个范围内的数据。

比如,要清空分区表 p1 分区 p0 ,直接 truncate 单个分区。

localhost:ytt> alter table p1 truncate partition p0;
Query OK, 0 rows affected (0.07 sec)

localhost:ytt> select count(*) from p1;
+----------+
| count(*) |
+----------+
|  9000001 |
+----------+
1 row in set (0.92 sec)

非分区表只有 truncate 整张表的功能,所以无法对部分数据进行快速清理,只能根据过滤条件来 delete 数据,那这个性能就差了很多。同样的操作,比非分区表慢几十倍。

localhost:ytt> delete from t1 where id < 1000000;
Query OK, 999999 rows affected (26.80 sec)

总结:

MySQL 分区表在很多场景下使用非常高效,本篇介绍了分区表在简单检索与运维方面的基础优势,后续我们逐个来讨论更多场景下的分区表应用。


关于 MySQL 的技术内容,你们还有什么想知道的吗?赶紧留言告诉小编吧!

相关推荐

从IDEA开始,迈进GO语言之门(idea got)

前言笔者在学习GO语言编程的时候,GO语言在国内还没有像JAVA/Php/Python那样普及,绕了不少的弯路,要开始入门学习一门编程语言,最好就先从选择一个好的编程语言的开发环境开始,有了这个开发环...

基于SpringBoot+MyBatis的私人影院java网上购票jsp源代码Mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目介绍基于SpringBoot...

基于springboot的个人服装管理系统java网上商城jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目介绍基于springboot...

基于springboot的美食网站Java食品销售jsp源代码Mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目介绍基于springboot...

贸易管理进销存springboot云管货管账分析java jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目描述贸易管理进销存spring...

SpringBoot+VUE员工信息管理系统Java人员管理jsp源代码Mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目介绍SpringBoot+V...

目前见过最牛的一个SpringBoot商城项目(附源码)还有人没用过吗

帮粉丝找了一个基于SpringBoot的天猫商城项目,快速部署运行,所用技术:MySQL,Druid,Log4j2,Maven,Echarts,Bootstrap...免费给大家分享出来前台演示...

SpringBoot+Mysql实现的手机商城附带源码演示导入视频

今天为大家带来的是基于SpringBoot+JPA+Thymeleaf框架的手机商城管理系统,商城系统分为前台和后台、前台用的是Bootstrap框架后台用的是SpringBoot+JPA都是现在主...

全网首发!马士兵内部共享—1658页《Java面试突击核心讲》

又是一年一度的“金九银十”秋招大热门,为助力广大程序员朋友“面试造火箭”,小编今天给大家分享的便是这份马士兵内部的面试神技——1658页《Java面试突击核心讲》!...

SpringBoot数据库操作的应用(springboot与数据库交互)

1.JDBC+HikariDataSource...

SpringBoot 整合 Flink 实时同步 MySQL

1、需求在Flink发布SpringBoot打包的jar包能够实时同步MySQL表,做到原表进行新增、修改、删除的时候目标表都能对应同步。...

SpringBoot + Mybatis + Shiro + mysql + redis智能平台源码分享

后端技术栈基于SpringBoot+Mybatis+Shiro+mysql+redis构建的智慧云智能教育平台基于数据驱动视图的理念封装element-ui,即使没有vue的使...

Springboot+Mysql舞蹈课程在线预约系统源码附带视频运行教程

今天发布的是由【猿来入此】的优秀学员独立做的一个基于springboot脚手架的Springboot+Mysql舞蹈课程在线预约系统,系统项目源代码在【猿来入此】获取!https://www.yuan...

SpringBoot+Mysql在线众筹系统源码+讲解视频+开发文档(参考论文

今天发布的是由【猿来入此】的优秀学员独立做的一个基于springboot脚手架的在线众筹管理系统,主要实现了普通用户在线参与众筹基本操作流程的全部功能,系统分普通用户、超级管理员等角色,除基础脚手架外...

Docker一键部署 SpringBoot 应用的方法,贼快贼好用

这两天发现个Gradle插件,支持一键打包、推送Docker镜像。今天我们来讲讲这个插件,希望对大家有所帮助!GradleDockerPlugin简介...

取消回复欢迎 发表评论: