百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

如何知道一个变量的分布是否为高斯分布?

ztj100 2025-03-04 16:00 8 浏览 0 评论


“你的输入变量/特征必须是高斯分布的”是一些机器学习模型(特别是线性模型)的要求。但我怎么知道变量的分布是高斯分布呢。本文重点介绍了保证变量分布为高斯分布的几种方法。

本文假定读者对高斯/正态分布有一定的了解。

在本文中,我们将使用来自Scikit-Learn的众所周知的Iris数据。

首先,让我们导入所需的包。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
#Converting the data from an array to a data frame
X = pd.DataFrame(load_iris()["data"]).copy()

输入特性/变量为[0,1,2,3]

方法一:直方图法

这是第一个和一个简单的方法,用来得到一个变量的分布。让我们画出Iris 数据变量的直方图。

X.hist(figsize=(10,10))

上面的直方图显示变量0和1接近于高斯分布(1似乎是最接近的)。而3和4看起来完全不是高斯的。需要注意的是,直方图可能会产生误导(具体可参考我们以前的文章)。

方法二:密度图(KDE图)

密度图是绘制变量分布的另一种方法。它们与直方图类似,但与直方图相比,它们能更清楚地显示变量的分布情况。

fig,ax = plt.subplots(2,2,figsize=(10,10))
row = col = 0
for n,c in enumerate(X.columns):
if (n%2 == 0) & (n > 0):
row += 1
col = 0
X[c].plot(kind="kde",ax=ax[row,col])
ax[row,col].set_title(c)
col += 1

现在我可以看到变量0和1比在直方图中显示的更高斯化。变量2和3看起来也有点接近高斯分布,除了两个峰值。

方法三:Q-Q图

Q-Q图根据指定的分布绘制数据。在这种情况下,指定的分布将是“norm”。

在Python中,Q-Q plot可以使用' scipy '的' probplot '函数绘制。如下所示。

from scipy.stats import probplotfor i in X.columns:
probplot(x=X[i],dist='norm',plot=plt)
plt.title(i)
plt.show()

从上面的Q-Q图可以看出,变量0和1紧密地跟随红线(正态/高斯分布)。而变量2和3在一些地方远离红线,这使它们远离了高斯分布。Q-Q图比直方图和密度图更可靠。

方法四:Shapiro-Wilk检验

夏皮罗-威尔克(Shapiro-Wilk)检验是一项针对正态性的统计检验。 这是用于检验正态性的定量方法。 Shapiro-Wilk检验通过检验零假设:即数据是从正态分布中提取的。来确定是否是正态分布

在Python中,可以使用' scipy '的' shapiro '函数执行shapiro - wilk检验。如下所示。

from scipy.stats import shapiro
for i in X.columns:
print(f'{i}: {"Not Gaussian" if shapiro(X[i])[1]<0.05 else "Gaussian"} {shapiro(X[i])}')

从上面的结果可以看出,只有变量1是高斯型的。

Shapiro-Wilk检验的一个缺点是,一旦样本大小(或变量的长度)超过5,000,就不可靠。

方法五:Kolmogorov-Smirnov检验

Kolmogorov-Smirnov检验是一项拟合优度的统计检验。 此测试比较两个分布(在这种情况下,两个分布之一是高斯分布)。 此检验的零假设是,两个分布相同(或),两个分布之间没有差异。

在Python中,可以使用“ scipy.stats”模块的“ kstest”执行Kolmogorov-Smirnov测试,如下所示。

首先,我们将对随机生成的正态分布进行测试。

from scipy.stats import kstest
np.random.seed(11)
normal_dist = np.random.randn(1000)
pd.Series(normal_dist).plot(kind="kde")
print(f'{"Not Gaussian" if kstest(normal_dist,"norm")[1]<0.05 else "Gaussian"} {kstest(normal_dist,"norm")}')

现在我们将对Iris数据进行测试。

from scipy.stats import kstest
for i in X.columns:
print(f'{i}: {"Not Gaussian" if kstest(X[i].values,"norm")[1]<0.05 else "Gaussian"} {kstest(X[i].values,"norm")}')

以上结果表明,没有变量具有高斯分布。 Kolmogorov-Smirnov检验期望输入变量具有理想的正态分布。

方法六:D’Agostino和Pearson的法

此方法使用偏度和峰度测试正态性。 该检验的零假设是,分布是从正态分布中得出的。

在Python中,可以使用“ scipy.stats”模块的“ normaltest”功能执行此测试,如下所示。

from scipy.stats import normaltest
for i in X.columns:
print(f'{i}: {"Not Gaussian" if normaltest(X[i].values,)[1]<0.05 else "Gaussian"} {normaltest(X[i].values)}')

以上结果表明变量0和1为高斯。 此测试并不期望分布是完全正态分布,而是接近正态分布。

总结

这些是用于测试数据正常性的许多方法中的几种。 我个人更喜欢结合以上所有方法来确定变量的分布是否为高斯分布,同时要牢记所使用的数据,问题和模型。

作者:KSV Muralidhar

deephub翻译组

相关推荐

Whoosh,纯python编写轻量级搜索工具

引言在许多应用程序中,搜索功能是至关重要的。Whoosh是一个纯Python编写的轻量级搜索引擎库,可以帮助我们快速构建搜索功能。无论是在网站、博客还是本地应用程序中,Whoosh都能提供高效的全文搜...

如何用Python实现二分搜索算法(python二分法查找代码)

如何用Python实现二分搜索算法二分搜索(BinarySearch)是一种高效的查找算法,适用于在有序数组中快速定位目标值。其核心思想是通过不断缩小搜索范围,每次将问题规模减半,时间复杂度为(O...

路径扫描 -- dirsearch(路径查找器怎么使用)

外表干净是尊重别人,内心干净是尊重自己,干净,在今天这个时代,应该是一种极高的赞美和珍贵。。。----网易云热评一、软件介绍Dirsearch是一种命令行工具,可以强制获取web服务器中的目录和文件...

78行Python代码帮你复现微信撤回消息!

来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。...

从零开始学习 Python!2《进阶知识》 Python进阶之路

欢迎来到Python学习的进阶篇章!如果你说已经掌握了基础语法,那么这篇就是你开启高手之路的大门。我们将一起探讨面向对象编程...

白帽黑客如何通过dirsearch脚本工具扫描和收集网站敏感文件

一、背景介绍...

Python之txt数据预定替换word预定义定位标记生成word报告(四)

续接Python之txt数据预定替换word预定义定位标记生成word报告(一)https://mp.toutiao.com/profile_v4/graphic/preview?pgc_id=748...

假期苦短,我用Python!这有个自动回复拜年信息的小程序

...

Python——字符串和正则表达式中的反斜杠(&#39;\&#39;)问题详解

在本篇文章里小编给大家整理的是关于Python字符串和正则表达式中的反斜杠('\')问题以及相关知识点,有需要的朋友们可以学习下。在Python普通字符串中在Python中,我们用'\'来转义某些普通...

Python re模块:正则表达式综合指南

Python...

Python中re模块详解(rem python)

在《...

python之re模块(python re模块sub)

re模块一.re模块的介绍1.什么是正则表达式"定义:正则表达式是一种对字符和特殊字符操作的一种逻辑公式,从特定的字符中,用正则表达字符来过滤的逻辑。(也是一种文本模式;)2、正则表达式可以帮助我们...

MySQL、PostgreSQL、SQL Server 数据库导入导出实操全解

在数字化时代,数据是关键资产,数据库的导入导出操作则是连接数据与应用场景的桥梁。以下是常见数据库导入导出的实用方法及代码,包含更多细节和特殊情况处理,助你应对各种实际场景。一、MySQL数据库...

Zabbix监控系统系列之六:监控 mysql

zabbix监控mysql1、监控规划在创建监控项之前要尽量考虑清楚要监控什么,怎么监控,监控数据如何存储,监控数据如何展现,如何处理报警等。要进行监控的系统规划需要对Zabbix很了解,这里只是...

mysql系列之一文详解Navicat工具的使用(二)

本章内容是系列内容的第二部分,主要介绍Navicat工具的使用。若查看第一部分请见:...

取消回复欢迎 发表评论: