百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

你还弄不懂的傅里叶变换,神经网络只用了30多行代码就学会了

ztj100 2024-10-28 21:15 14 浏览 0 评论

明敏 发自 凹非寺
量子位 报道 | 公众号 QbitAI

在我们的生活中,大到天体观测、小到MP3播放器上的频谱,没有傅里叶变换都无法实现。

通俗来讲,离散傅里叶变换(DFT)就是把一串复杂波形中分成不同频率成分。

比如声音,如果用声波记录仪显示声音的话,其实生活中绝大部分声音都是非常复杂、甚至杂乱无章的。

而通过傅里叶变换,就能把这些杂乱的声波转化为正弦波,也就是我们平常看到的音乐频谱图的样子。

不过在实际计算中,这个过程其实非常复杂。

如果把声波视作一个连续函数,它可以唯一表示为一堆三角函数相叠加。不过在叠加过程中,每个三角函数的加权系数不同,有的要加高一些、有的要压低一些,有的甚至不加。

傅里叶变换要找到这些三角函数以及它们各自的权重。

这不就巧了,这种找啊找的过程,像极了神经网络

神经网络的本质其实就是逼近一个函数。

那岂不是可以用训练神经网络的方式来搞定傅里叶变换?

这还真的可行,并且最近有人在网上发布了自己训练的过程和结果。

DFT=神经网络

该怎么训练神经网络呢?这位网友给出的思路是这样的:

首先要把离散傅里叶变换(DFT)看作是一个人工神经网络,这是一个单层网络,没有bias、没有激活函数,并且对于权重有特定的值。它输出节点的数量等于傅里叶变换计算后频率的数量。

具体方法如下:

这是一个DFT:

  • k表示每N个样本的循环次数;
  • N表示信号的长度;
  • 表示信号在样本n处的值。

一个信号可以表示为所有正弦信号的和。

yk是一个复值,它给出了信号x中频率为k的正弦信号的信息;从yk我们可以计算正弦的振幅和相位。

换成矩阵式,它就变成了这样:

这里给出了特定值k的傅里叶值。

不过通常情况下,我们要计算全频谱,即k从[0,1,…N-1]的值,这可以用一个矩阵来表示(k按列递增,n按行递增):

简化后得到:

看到这里应该还很熟悉,因为它是一个没有bias和激活函数的神经网络层。

指数矩阵包含权值,可以称之为复合傅里叶权值(Complex Fourier weights),通常情况下我们并不知道神经网络的权重,不过在这里可以。

  • 不用复数

通常我们也不会在神经网络中使用复数,为了适应这种情况,就需要把矩阵的大小翻倍,使其左边部分包含实数,右边部分包含虚数。

带入DFT,可以得到:

然后用实部(cos形式)来表示矩阵的左半部分,用虚部(sin形式)来表示矩阵的右半部分:

简化后可以得到:

称为傅里叶权重

需要注意的是,y^和y实际上包含相同的信息,但是y^

不使用复数,所以它的长度是y的两倍。

换句话说,我们可以用

表示振幅和相位,但是我们通常会使用

现在,就可以将傅里叶层加到网络中了。

用傅里叶权重计算傅里叶变换

现在就可以用神经网络来实现

,并用快速傅里叶变换(FFT)检查它是否正确。

import matplotlib.pyplot as plt


y_real = y[:, :signal_length]
y_imag = y[:, signal_length:]
tvals = np.arange(signal_length).reshape([-1, 1])
freqs = np.arange(signal_length).reshape([1, -1])
arg_vals = 2 * np.pi * tvals * freqs / signal_length
sinusoids = (y_real * np.cos(arg_vals) - y_imag * np.sin(arg_vals)) / signal_length
reconstructed_signal = np.sum(sinusoids, axis=1)


print('rmse:', np.sqrt(np.mean((x - reconstructed_signal)**2)))
plt.subplot(2, 1, 1)
plt.plot(x[0,:])
plt.title('Original signal')
plt.subplot(2, 1, 2)
plt.plot(reconstructed_signal)
plt.title('Signal reconstructed from sinusoids after DFT')
plt.tight_layout()
plt.show()
rmse: 2.3243522568191728e-15

得到的这个微小误差值可以证明,计算的结果是我们想要的。

  • 另一种方法是重构信号
import matplotlib.pyplot as plt


y_real = y[:, :signal_length]
y_imag = y[:, signal_length:]
tvals = np.arange(signal_length).reshape([-1, 1])
freqs = np.arange(signal_length).reshape([1, -1])
arg_vals = 2 * np.pi * tvals * freqs / signal_length
sinusoids = (y_real * np.cos(arg_vals) - y_imag * np.sin(arg_vals)) / signal_length
reconstructed_signal = np.sum(sinusoids, axis=1)


print('rmse:', np.sqrt(np.mean((x - reconstructed_signal)**2)))
plt.subplot(2, 1, 1)
plt.plot(x[0,:])
plt.title('Original signal')
plt.subplot(2, 1, 2)
plt.plot(reconstructed_signal)
plt.title('Signal reconstructed from sinusoids after DFT')
plt.tight_layout()
plt.show()
rmse: 2.3243522568191728e-15

最后可以看到,DFT后从正弦信号重建的信号和原始信号能够很好地重合。

通过梯度下降学习傅里叶变换

现在就到了让神经网络真正来学习的部分,这一步就不需要向之前那样预先计算权重值了。

首先,要用FFT来训练神经网络学习离散傅里叶变换:

import tensorflow as tf


signal_length = 32


# Initialise weight vector to train:
W_learned = tf.Variable(np.random.random([signal_length, 2 * signal_length]) - 0.5)


# Expected weights, for comparison:
W_expected = create_fourier_weights(signal_length)


losses = []
rmses = []


for i in range(1000):
    # Generate a random signal each iteration:
    x = np.random.random([1, signal_length]) - 0.5
    
    # Compute the expected result using the FFT:
    fft = np.fft.fft(x)
    y_true = np.hstack([fft.real, fft.imag])
    
    with tf.GradientTape() as tape:
        y_pred = tf.matmul(x, W_learned)
        loss = tf.reduce_sum(tf.square(y_pred - y_true))
    
    # Train weights, via gradient descent:
    W_gradient = tape.gradient(loss, W_learned)    
    W_learned = tf.Variable(W_learned - 0.1 * W_gradient)


    losses.append(loss)
    rmses.append(np.sqrt(np.mean((W_learned - W_expected)**2)))
Final loss value 1.6738563548424711e-09
Final weights' rmse value 3.1525832404710523e-06

得出结果如上,这证实了神经网络确实能够学习离散傅里叶变换。

训练网络学习DFT

除了用快速傅里叶变化的方法,还可以通过网络来重建输入信号来学习DFT。(类似于autoencoders自编码器)。

自编码器(autoencoder, AE)是一类在半监督学习和非监督学习中使用的人工神经网络(Artificial Neural Networks, ANNs),其功能是通过将输入信息作为学习目标,对输入信息进行表征学习(representation learning)。

W_learned = tf.Variable(np.random.random([signal_length, 2 * signal_length]) - 0.5)


tvals = np.arange(signal_length).reshape([-1, 1])
freqs = np.arange(signal_length).reshape([1, -1])
arg_vals = 2 * np.pi * tvals * freqs / signal_length
cos_vals = tf.cos(arg_vals) / signal_length
sin_vals = tf.sin(arg_vals) / signal_length


losses = []
rmses = []


for i in range(10000):
    x = np.random.random([1, signal_length]) - 0.5
    
    with tf.GradientTape() as tape:
        y_pred = tf.matmul(x, W_learned)
        y_real = y_pred[:, 0:signal_length]
        y_imag = y_pred[:, signal_length:]
        sinusoids = y_real * cos_vals - y_imag * sin_vals
        reconstructed_signal = tf.reduce_sum(sinusoids, axis=1)
        loss = tf.reduce_sum(tf.square(x - reconstructed_signal))


    W_gradient = tape.gradient(loss, W_learned)    
    W_learned = tf.Variable(W_learned - 0.5 * W_gradient)


    losses.append(loss)
    rmses.append(np.sqrt(np.mean((W_learned - W_expected)**2)))
Final loss value 4.161919455121241e-22
Final weights' rmse value 0.20243339269590094

作者用这一模型进行了很多测试,最后得到的权重不像上面的例子中那样接近傅里叶权值,但是可以看到重建的信号是一致的。

换成输入振幅和相位试试看呢。

W_learned = tf.Variable(np.random.random([signal_length, 2 * signal_length]) - 0.5)


losses = []
rmses = []


for i in range(10000):
    x = np.random.random([1, signal_length]) - .5
    
    with tf.GradientTape() as tape:
        y_pred = tf.matmul(x, W_learned)
        y_real = y_pred[:, 0:signal_length]
        y_imag = y_pred[:, signal_length:]
        amplitudes = tf.sqrt(y_real**2 + y_imag**2) / signal_length
        phases = tf.atan2(y_imag, y_real)
        sinusoids = amplitudes * tf.cos(arg_vals + phases)
        reconstructed_signal = tf.reduce_sum(sinusoids, axis=1)
        loss = tf.reduce_sum(tf.square(x - reconstructed_signal))


    W_gradient = tape.gradient(loss, W_learned)
    W_learned = tf.Variable(W_learned - 0.5 * W_gradient)


    losses.append(loss)
    rmses.append(np.sqrt(np.mean((W_learned - W_expected)**2)))
Final loss value 2.2379359316633115e-21
Final weights' rmse value 0.2080118219691059

可以看到,重建信号再次一致;

不过,和此前一样,输入振幅和相位最终得到的权值也不完全等同于傅里叶权值(但非常接近)。

由此可以得出结论,虽然最后得到的权重还不是最准确的,但是也能够获得局部的最优解

这样一来,神经网络就学会了傅里叶变换!

  • 值得一提的是,这个方法目前还有疑问存在:

首先,它没有解释计算出的权值和真正的傅里叶权值相差多少;

而且,也没有说明将傅里叶层放到模型中能带来哪些益处。

原文链接:
https://sidsite.com/posts/fourier-nets/

— 完 —

量子位 QbitAI · 头条号签约

关注我们,第一时间获知前沿科技动态

相关推荐

从IDEA开始,迈进GO语言之门(idea got)

前言笔者在学习GO语言编程的时候,GO语言在国内还没有像JAVA/Php/Python那样普及,绕了不少的弯路,要开始入门学习一门编程语言,最好就先从选择一个好的编程语言的开发环境开始,有了这个开发环...

基于SpringBoot+MyBatis的私人影院java网上购票jsp源代码Mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目介绍基于SpringBoot...

基于springboot的个人服装管理系统java网上商城jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目介绍基于springboot...

基于springboot的美食网站Java食品销售jsp源代码Mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目介绍基于springboot...

贸易管理进销存springboot云管货管账分析java jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目描述贸易管理进销存spring...

SpringBoot+VUE员工信息管理系统Java人员管理jsp源代码Mysql

本项目为前几天收费帮学妹做的一个项目,JavaEEJSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。一、项目介绍SpringBoot+V...

目前见过最牛的一个SpringBoot商城项目(附源码)还有人没用过吗

帮粉丝找了一个基于SpringBoot的天猫商城项目,快速部署运行,所用技术:MySQL,Druid,Log4j2,Maven,Echarts,Bootstrap...免费给大家分享出来前台演示...

SpringBoot+Mysql实现的手机商城附带源码演示导入视频

今天为大家带来的是基于SpringBoot+JPA+Thymeleaf框架的手机商城管理系统,商城系统分为前台和后台、前台用的是Bootstrap框架后台用的是SpringBoot+JPA都是现在主...

全网首发!马士兵内部共享—1658页《Java面试突击核心讲》

又是一年一度的“金九银十”秋招大热门,为助力广大程序员朋友“面试造火箭”,小编今天给大家分享的便是这份马士兵内部的面试神技——1658页《Java面试突击核心讲》!...

SpringBoot数据库操作的应用(springboot与数据库交互)

1.JDBC+HikariDataSource...

SpringBoot 整合 Flink 实时同步 MySQL

1、需求在Flink发布SpringBoot打包的jar包能够实时同步MySQL表,做到原表进行新增、修改、删除的时候目标表都能对应同步。...

SpringBoot + Mybatis + Shiro + mysql + redis智能平台源码分享

后端技术栈基于SpringBoot+Mybatis+Shiro+mysql+redis构建的智慧云智能教育平台基于数据驱动视图的理念封装element-ui,即使没有vue的使...

Springboot+Mysql舞蹈课程在线预约系统源码附带视频运行教程

今天发布的是由【猿来入此】的优秀学员独立做的一个基于springboot脚手架的Springboot+Mysql舞蹈课程在线预约系统,系统项目源代码在【猿来入此】获取!https://www.yuan...

SpringBoot+Mysql在线众筹系统源码+讲解视频+开发文档(参考论文

今天发布的是由【猿来入此】的优秀学员独立做的一个基于springboot脚手架的在线众筹管理系统,主要实现了普通用户在线参与众筹基本操作流程的全部功能,系统分普通用户、超级管理员等角色,除基础脚手架外...

Docker一键部署 SpringBoot 应用的方法,贼快贼好用

这两天发现个Gradle插件,支持一键打包、推送Docker镜像。今天我们来讲讲这个插件,希望对大家有所帮助!GradleDockerPlugin简介...

取消回复欢迎 发表评论: